Representation of PE Files using LSTM Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00347174" target="_blank" >RIV/68407700:21240/21:00347174 - isvavai.cz</a>
Result on the web
<a href="https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571" target="_blank" >https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010257105160525" target="_blank" >10.5220/0010257105160525</a>
Alternative languages
Result language
angličtina
Original language name
Representation of PE Files using LSTM Networks
Original language description
An ever-growing number of malicious attacks on IT infrastructures calls for new and efficient methods of protection. In this paper, we focus on malware detection using the Long Short-Term Memory (LSTM) as a preprocessing tool to increase the classification accuracy of machine learning algorithms. To represent the malicious and benign programs, we used features extracted from files in the PE file format. We created a large dataset on which we performed common feature preparation and feature selection techniques. With the help of various LSTM and Bidirectional LSTM (BLSTM) network architectures, we further transformed the collected features and trained other supervised ML algorithms on both transformed and vanilla datasets. Transformation by deep (4 hidden layers) versions of LSTM and BLSTM networks performed well and decreased the error rate of several state-of-the-art machine learning algorithms significantly. For each machine learning algorithm considered in our experiments, the LSTM-based transformation of the feature space results in decreasing the corresponding error rate by more than 58.60 %, in comparison when the feature space was not transformed using LSTM network.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 7th International Conference on Information Systems Security and Privacy
ISBN
978-989-758-491-6
ISSN
2184-4356
e-ISSN
—
Number of pages
10
Pages from-to
516-525
Publisher name
SciTePress
Place of publication
Madeira
Event location
Vídeň / Virtuální
Event date
Feb 11, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000664076200052