All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Representation of PE Files using LSTM Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00347174" target="_blank" >RIV/68407700:21240/21:00347174 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571" target="_blank" >https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0010257105160525" target="_blank" >10.5220/0010257105160525</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Representation of PE Files using LSTM Networks

  • Original language description

    An ever-growing number of malicious attacks on IT infrastructures calls for new and efficient methods of protection. In this paper, we focus on malware detection using the Long Short-Term Memory (LSTM) as a preprocessing tool to increase the classification accuracy of machine learning algorithms. To represent the malicious and benign programs, we used features extracted from files in the PE file format. We created a large dataset on which we performed common feature preparation and feature selection techniques. With the help of various LSTM and Bidirectional LSTM (BLSTM) network architectures, we further transformed the collected features and trained other supervised ML algorithms on both transformed and vanilla datasets. Transformation by deep (4 hidden layers) versions of LSTM and BLSTM networks performed well and decreased the error rate of several state-of-the-art machine learning algorithms significantly. For each machine learning algorithm considered in our experiments, the LSTM-based transformation of the feature space results in decreasing the corresponding error rate by more than 58.60 %, in comparison when the feature space was not transformed using LSTM network.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 7th International Conference on Information Systems Security and Privacy

  • ISBN

    978-989-758-491-6

  • ISSN

    2184-4356

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    516-525

  • Publisher name

    SciTePress

  • Place of publication

    Madeira

  • Event location

    Vídeň / Virtuální

  • Event date

    Feb 11, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000664076200052