All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cyclopropylamine plasma polymer surfaces in quartz crystal microbalance and surface plasmon resonance immunosensing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F17%3A00096777" target="_blank" >RIV/00216224:14740/17:00096777 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cyclopropylamine plasma polymer surfaces in quartz crystal microbalance and surface plasmon resonance immunosensing

  • Original language description

    Immunosensors with highly sensitive and rapid detection capabilities of various biomolecules are of a great demand in the field of biomedicine and environmental control. The two mostly employed transducer principles are either optical surface plasmon resonance (SPR) and mass sensitive quartz crystal microbalance (QCM). The first task encountered in the immunosensor development is the preparation of a coating matrix suitable for the immobilization of antibody on the golden layer of SPR or QCM. The most popular approaches are based on wet chemical treatments such as self-assembled monolayers (SAMs) of alkanethiols, disulfides, or polyethylenimine (PEI). However, these approaches suffer from several drawbacks such as a poor stability, long time preparation, unstable baseline or a high level of noise. As an alternative to SAMs, the deposition of thin functional coatings by plasma polymerization can be employed. The plasma polymerization has already been successfully applied to the deposition of thin films containing carboxyl, amine, anhydride groups. In this work, pulsed plasma polymerization of cyclopropylamine is employed to deposit stable amine-rich thin films on the surfaces of QCM and SPR chips. The AL-01 antibody, specific to human serum albumin (HSA), was attached to the QCM and SPR chips surfaces via glutaraldehyde activation. For the developed immunosensors the stable baseline was recorded. Selective and high response was achieved during the reaction with the solution of antigen. The results confirmed that the introduced methodology have a great potential for biosensing applications.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    8th International Conference on Nanomaterials - Research and Application, NANOCON 2016

  • ISBN

    9788087294710

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    395-401

  • Publisher name

    TANGER Ltd.

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jan 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000410656100069