All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ProTAME Arrest in Mammalian Oocytes and Embryos Does Not Require Spindle Assembly Checkpoint Activity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F19%3A00113373" target="_blank" >RIV/00216224:14740/19:00113373 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1422-0067/20/18/4537" target="_blank" >https://www.mdpi.com/1422-0067/20/18/4537</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms20184537" target="_blank" >10.3390/ijms20184537</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ProTAME Arrest in Mammalian Oocytes and Embryos Does Not Require Spindle Assembly Checkpoint Activity

  • Original language description

    In both mitosis and meiosis, metaphase to anaphase transition requires the activity of a ubiquitin ligase known as anaphase promoting complex/cyclosome (APC/C). The activation of APC/C in metaphase is under the control of the checkpoint mechanism, called the spindle assembly checkpoint (SAC), which monitors the correct attachment of all kinetochores to the spindle. It has been shown previously in somatic cells that exposure to a small molecule inhibitor, prodrug tosyl-l-arginine methyl ester (proTAME), resulted in cell cycle arrest in metaphase, with low APC/C activity. Interestingly, some reports have also suggested that the activity of SAC is required for this arrest. We focused on the characterization of proTAME inhibition of cell cycle progression in mammalian oocytes and embryos. Our results show that mammalian oocytes and early cleavage embryos show dose-dependent metaphase arrest after exposure to proTAME. However, in comparison to the somatic cells, we show here that the proTAME-induced arrest in these cells does not require SAC activity. Our results revealed important differences between mammalian oocytes and early embryos and somatic cells in their requirements of SAC for APC/C inhibition. In comparison to the somatic cells, oocytes and embryos show much higher frequency of aneuploidy. Our results are therefore important for understanding chromosome segregation control mechanisms, which might contribute to the premature termination of development or severe developmental and mental disorders of newborns.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1422-0067

  • e-ISSN

    1661-6596

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

    1-19

  • UT code for WoS article

    000489100500216

  • EID of the result in the Scopus database

    2-s2.0-85072520452