All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The CH-pi Interaction in Protein-Carbohydrate Binding: Bioinformatics and In Vitro Quantification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F20%3A00114712" target="_blank" >RIV/00216224:14740/20:00114712 - isvavai.cz</a>

  • Result on the web

    <a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202000593" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202000593</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/chem.202000593" target="_blank" >10.1002/chem.202000593</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The CH-pi Interaction in Protein-Carbohydrate Binding: Bioinformatics and In Vitro Quantification

  • Original language description

    The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-pi interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-pi interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-pi stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol(-1). All the results show that the stacking CH-pi interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10600 - Biological sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemistry - A European Journal

  • ISSN

    0947-6539

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    47

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    10769-10780

  • UT code for WoS article

    000552350100001

  • EID of the result in the Scopus database

    2-s2.0-85088650259