All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The analysis of CH–π interaction in protein–carbohydrate binding

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F21%3A00129957" target="_blank" >RIV/00216224:14740/21:00129957 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1107/S0108767321090073" target="_blank" >http://dx.doi.org/10.1107/S0108767321090073</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1107/S0108767321090073" target="_blank" >10.1107/S0108767321090073</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The analysis of CH–π interaction in protein–carbohydrate binding

  • Original language description

    The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. Using the Protein Data Bank (PDB) structural data, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (ITC, X-ray crystallography) and computational techniques. Within 12 000 protein complexes with carbohydrates from PDB, the stacking interactions were found in about 39% of them. The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 kcal/mol up to 8 kcal/mol. All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů