Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F22%3A00128671" target="_blank" >RIV/00216224:14740/22:00128671 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2079-7737/11/12/1798" target="_blank" >https://www.mdpi.com/2079-7737/11/12/1798</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/biology11121798" target="_blank" >10.3390/biology11121798</a>
Alternative languages
Result language
angličtina
Original language name
Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling
Original language description
Simple Summary MicroRNAs (miRNAs) are a category of small RNAs (sRNAs) that have been found to regulate gene expression. Through the mediation of proteins from the Argonaute family, miRNAs target messenger RNAs (mRNAs) for destruction (cleavage or repression). Other types of sRNAs, including transfer-RNA-derived fragments (tRFs) and small interfering RNAs (siRNAs), have been indicated as potential regulators of gene expression. The complex network of RNA-RNA interactions is still under exploration, which can be assisted by the development of computational techniques. Here, we report the recent advancements in the field of bioinformatical and Machine Learning tools for the prediction of sRNA targets, and a brief overview of the development of high-throughput sequencing technologies. MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. They are suggested to be involved in most biological processes of the cell primarily by targeting messenger RNAs (mRNAs) for cleavage or translational repression. Their binding to their target sites is mediated by the Argonaute (AGO) family of proteins. Thus, miRNA target prediction is pivotal for research and clinical applications. Moreover, transfer-RNA-derived fragments (tRFs) and other types of small RNAs have been found to be potent regulators of Ago-mediated gene expression. Their role in mRNA regulation is still to be fully elucidated, and advancements in the computational prediction of their targets are in their infancy. To shed light on these complex RNA-RNA interactions, the availability of good quality high-throughput data and reliable computational methods is of utmost importance. Even though the arsenal of computational approaches in the field has been enriched in the last decade, there is still a degree of discrepancy between the results they yield. This review offers an overview of the relevant advancements in the field of bioinformatics and machine learning and summarizes the key strategies utilized for small RNA target prediction. Furthermore, we report the recent development of high-throughput sequencing technologies, and explore the role of non-miRNA AGO driver sequences.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10600 - Biological sciences
Result continuities
Project
<a href="/en/project/GJ19-10976Y" target="_blank" >GJ19-10976Y: Seed-agnostic miRNA binding site classification</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BIOLOGY-BASEL
ISSN
2079-7737
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
12
Country of publishing house
CH - SWITZERLAND
Number of pages
24
Pages from-to
1798
UT code for WoS article
000902293400001
EID of the result in the Scopus database
2-s2.0-85144969710