miRBind: A Deep Learning Method for miRNA Binding Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F22%3A00128672" target="_blank" >RIV/00216224:14740/22:00128672 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-4425/13/12/2323" target="_blank" >https://www.mdpi.com/2073-4425/13/12/2323</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/genes13122323" target="_blank" >10.3390/genes13122323</a>
Alternative languages
Result language
angličtina
Original language name
miRBind: A Deep Learning Method for miRNA Binding Classification
Original language description
The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10603 - Genetics and heredity (medical genetics to be 3)
Result continuities
Project
<a href="/en/project/GJ19-10976Y" target="_blank" >GJ19-10976Y: Seed-agnostic miRNA binding site classification</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GENES
ISSN
2073-4425
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
12
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
2323
UT code for WoS article
000902664500001
EID of the result in the Scopus database
2-s2.0-85144726634