All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

miRBind: A Deep Learning Method for miRNA Binding Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F22%3A00128672" target="_blank" >RIV/00216224:14740/22:00128672 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4425/13/12/2323" target="_blank" >https://www.mdpi.com/2073-4425/13/12/2323</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/genes13122323" target="_blank" >10.3390/genes13122323</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    miRBind: A Deep Learning Method for miRNA Binding Classification

  • Original language description

    The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10603 - Genetics and heredity (medical genetics to be 3)

Result continuities

  • Project

    <a href="/en/project/GJ19-10976Y" target="_blank" >GJ19-10976Y: Seed-agnostic miRNA binding site classification</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    GENES

  • ISSN

    2073-4425

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    2323

  • UT code for WoS article

    000902664500001

  • EID of the result in the Scopus database

    2-s2.0-85144726634