All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The evolution of the hypotetraploid Catolobus pendulus genome – the poorly known sister species of Capsella

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F23%3A00132119" target="_blank" >RIV/00216224:14740/23:00132119 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3389/fpls.2023.1165140" target="_blank" >https://doi.org/10.3389/fpls.2023.1165140</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fpls.2023.1165140" target="_blank" >10.3389/fpls.2023.1165140</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The evolution of the hypotetraploid Catolobus pendulus genome – the poorly known sister species of Capsella

  • Original language description

    The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, similar to 330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Plant Science

  • ISSN

    1664-462X

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000991541300001

  • EID of the result in the Scopus database

    2-s2.0-85159871404