All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antimicrobial Activity of Polyhexamethylene Guanidine Derivatives Introduced into Polycaprolactone

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F18%3A39912721" target="_blank" >RIV/00216275:25310/18:39912721 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10924-017-0974-9" target="_blank" >http://dx.doi.org/10.1007/s10924-017-0974-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10924-017-0974-9" target="_blank" >10.1007/s10924-017-0974-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antimicrobial Activity of Polyhexamethylene Guanidine Derivatives Introduced into Polycaprolactone

  • Original language description

    The research was aimed at determining the abundance of biofilm formation by Escherichia coli and Staphylococcus aureus on the surface of polycaprolactone (PCL) with polyhexamethylene guanidine (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. Biofilm abundance was determined by spectrophotometry, using crystal violet staining. Hydrolytic enzymes after contact with the film were determined with the use of non-specific substrate-fluorscein diacetate. The effect of PHMG derivatives on dehydrogenases activity was assessed using the test, where triphenyltetrazolium chloride (TTC) is reduced to triphenylformazan (TF). The PCL containing PHMG granular polyethylene wax and salt of sulfanilic acid (0.6-1% wt.) strongest inhibited biofilm formation. PHMG derivatives introduced into PCL were found to slightly affect hydrolases activity in both E. coli and S. aureus at a concentration of 0.2 and 0.6%. It was also found that dehydrogenases activity was inhibited by PCL films containing PHMG derivatives. PCL containing 1% of PHMG sulfanilate strongest inhibited hydrolases activity, whereas PCL modified with 1% of PHMG granular polyethylene wax showed the highest inhibitory effect on the activity of both enzymes. W-PCL and A-PCL composites (at concentration of 0.6%) have optimal combination of antibiofilm activity and biodegradability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Polymers and the Environment

  • ISSN

    1566-2543

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    589-595

  • UT code for WoS article

    000425964600016

  • EID of the result in the Scopus database

    2-s2.0-85014056015