All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermoelectric properties and stability of Tl-doped SnS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F19%3A39915146" target="_blank" >RIV/00216275:25310/19:39915146 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/19:00509416 RIV/00216224:14740/19:00113448 RIV/00216208:11320/19:10398920

  • Result on the web

    <a href="http://DOI" target="_blank" >http://DOI</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2019.151902" target="_blank" >10.1016/j.jallcom.2019.151902</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermoelectric properties and stability of Tl-doped SnS

  • Original language description

    Tin sulfide (SnS) is an analog of tin selenide (SnSe) and is a promising thermoelectric material. However, a stable and effective doping of this compound has still not been achieved. According to our observations, this is mainly due to the very low equilibrium solubility of dopants and formation of extraneous phases, which is also an important issue for photovoltaic (PV) applications. Achieving a reasonable (60%) doping efficiency of thallium (Tl) in a cation sublattice of SnSe, we explored the same doping for SnS. Hot-pressed polycrystalline (PC) samples were prepared along with their single-crystalline (SC) counterparts. Samples were examined for extraneous phases by X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS). Thermal stability was determined by thermogravimetric analysis (TGA). Measurements of the Seebeck and Hall coefficient, and electrical and thermal conductivity were conducted over a temperature range of 80-775 K. The experiments suggested a very low solubility of Tl ( approximate to 0.1%). Slight Tl doping resulted in a substantial improvement of the thermoelectric efficiency (ZT) of SnS and enhanced crystal quality in terms of carrier mobility. We found, however, that attempts to prepare material with a high concentration of Tl or the examination of samples at temperatures above 600 K led to chemical instability. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Alloys and Compounds

  • ISSN

    0925-8388

  • e-ISSN

  • Volume of the periodical

    811

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    9

  • Pages from-to

    "151902-1"-"151902-9"

  • UT code for WoS article

    000487657000006

  • EID of the result in the Scopus database