All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluating sentiment in annual reports for financial distress prediction using neural networks and support vector machines

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F13%3A39899272" target="_blank" >RIV/00216275:25410/13:39899272 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-41016-1_1" target="_blank" >http://dx.doi.org/10.1007/978-3-642-41016-1_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-41016-1_1" target="_blank" >10.1007/978-3-642-41016-1_1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluating sentiment in annual reports for financial distress prediction using neural networks and support vector machines

  • Original language description

    Sentiment in annual reports is recognized as being an important determinant of future financial performance. The aim of this study is to examine the effect of the sentiment on future financial distress. We evaluated the sentiment in the annual reports of U.S. companies using word categorization (rule-based) approach. We used six categories of sentiment, together with financial indicators, as the inputs of neural networks and support vector machines. The results indicate that the sentiment information significantly improves the accuracy of the used classifiers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    AE - Management, administration and clerical work

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-10331S" target="_blank" >GA13-10331S: The role of text information in corporate financial distress prediction models – country-specific and industry-specific approaches</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Engineering Applications of Neural Networks: 14th International Conference (EANN 2013), Part II

  • ISBN

    978-3-642-41015-4

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1-10

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Halkidiki

  • Event date

    Sep 13, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000345333000001