By the binomial theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F14%3A39898566" target="_blank" >RIV/00216275:25410/14:39898566 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
By the binomial theorem
Original language description
The original solution of Problem B-1137 in the problem section of this journal. It was acquired to prove the expression of given sums with the Fibonacci and Lucas numbers in the closed form. The proof is done for the generalized Fibonacci numbers satisfying the basic recurrence. Then the Fibonacci and Lucas numbers are special types of them for concretely given initial terms of the generalized sequence
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
2
Pages from-to
370-371
UT code for WoS article
—
EID of the result in the Scopus database
—