All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Predicting Abnormal Bank Stock Returns Using Textual Analysis of Annual Reports - A Neural Network Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39902124" target="_blank" >RIV/00216275:25410/16:39902124 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-44188-7_5" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-44188-7_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-44188-7_5" target="_blank" >10.1007/978-3-319-44188-7_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Predicting Abnormal Bank Stock Returns Using Textual Analysis of Annual Reports - A Neural Network Approach

  • Original language description

    This paper aims to extract both sentiment and bag-of-words information from the annual reports of U.S. banks. The sentiment analysis is based on two commonly used finance-specific dictionaries, while the bag-of-words are selected according to their tf-idf. We combine these features with financial indicators to predict abnormal bank stock returns using a neural network with dropout regularization and rectified linear units. We show that this method outperforms other machine learning algorithms (Na?ve Bayes, Support Vector Machine, C4.5 decision tree, and k-nearest neighbour classifier) in predicting positive/negative abnormal stock returns. Thus, this neural network seems to be well suited for text classification tasks working with sparse high-dimensional data. We also show that the quality of the prediction significantly increased when using the combination of financial indicators and bigrams and trigrams, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA16-19590S" target="_blank" >GA16-19590S: Topic and sentiment analysis of multiple textual sources for corporate financial decision-making</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Communications in Computer and Information Science

  • ISBN

    978-3-319-44187-0

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    67-78

  • Publisher name

    Springer

  • Place of publication

    Dordrecht

  • Event location

    Aberdeen

  • Event date

    Sep 2, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article