Intuitionistic neuro-fuzzy network with evolutionary adaptation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39910602" target="_blank" >RIV/00216275:25410/17:39910602 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s12530-016-9157-5" target="_blank" >http://dx.doi.org/10.1007/s12530-016-9157-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12530-016-9157-5" target="_blank" >10.1007/s12530-016-9157-5</a>
Alternative languages
Result language
angličtina
Original language name
Intuitionistic neuro-fuzzy network with evolutionary adaptation
Original language description
Intuitionistic fuzzy inference systems (IFISs) incorporate imprecision in the construction of membership functions present in fuzzy inference systems. In this paper we design intuitionistic neuro-fuzzy networks to adapt the antecedent and consequent parameters of IFISs. We also propose a mean of maximum defuzzification method for a class of Takagi-Sugeno IFISs and this method is compared with the basic defuzzification distribution operator. On both real-life credit scoring data and seven benchmark regression datasets we show that the intuitionistic neuro-fuzzy network trained with particle swarm optimization outperforms traditional ANFIS methods (hybrid and backpropagation) and ANFIS trained with evolutionary algorithms (genetic algorithm and particle swarm optimization), respectively. A set of nonparametric tests for multiple datasets is performed to demonstrate statistical differences between the algorithms. In the task of adapting the intuitionistic neuro-fuzzy network, we show that particle swarm optimization provides a higher prediction accuracy compared with traditional algorithms based on gradient descent or least-squares estimation.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA13-10331S" target="_blank" >GA13-10331S: The role of text information in corporate financial distress prediction models – country-specific and industry-specific approaches</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Evolving Systems
ISSN
1868-6478
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
35-47
UT code for WoS article
000398452600004
EID of the result in the Scopus database
2-s2.0-85015365604