All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fake review detection in e-Commerce platforms using aspect-based sentiment analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920757" target="_blank" >RIV/00216275:25410/23:39920757 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0148296323005027" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0148296323005027</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jbusres.2023.114143" target="_blank" >10.1016/j.jbusres.2023.114143</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fake review detection in e-Commerce platforms using aspect-based sentiment analysis

  • Original language description

    Consumers rely on internet user reviews. Existing sentiment-based detection systems fail to capture consumer feelings regarding numerous aspects of products or services which influence their purchasing decisions. Despite the growing interest in detecting false reviews, prior studies have not explored the capacity to detect fake reviews for diverse products, which require distinct consumer experience. To overcome these problems, this paper proposes a fake review detection model using aspect-based sentiment analysis (ABSA) while considering the effects of product types. Using a dataset of Amazon reviews, our ABSA model revealed that two aspects are fundamental for detecting fake reviews and suggests the need to associate the two. These are the product category and the verified purchase attribute (with the greatest contribution observed for credence and experience product types).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50204 - Business and management

Result continuities

  • Project

    <a href="/en/project/GA22-22586S" target="_blank" >GA22-22586S: Aspect-based sentiment analysis of financial texts for predicting corporate financial performance</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Business Research

  • ISSN

    0148-2963

  • e-ISSN

    1873-7978

  • Volume of the periodical

    167

  • Issue of the periodical within the volume

    listopad

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    114143

  • UT code for WoS article

    001039646900001

  • EID of the result in the Scopus database

    2-s2.0-85166630721