Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39922253" target="_blank" >RIV/00216275:25410/24:39922253 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-63219-8_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-63219-8_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-63219-8_3" target="_blank" >10.1007/978-3-031-63219-8_3</a>
Alternative languages
Result language
angličtina
Original language name
Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer
Original language description
News sentiment is attracting considerable interest in stock market prediction, given its crucial role in shaping stock prices. Previous research has mainly focused on improving prediction accuracy by exploiting news sentiment, without adequately considering the different levels of attention that individual news articles receive. Furthermore, despite the advanced predictive capabilities of deep learning models, there has been a lack of focus on the interpretability of these models, leading to predictions that are not transparent. This study presents an innovative prediction model that integrates a FinBERT-based analysis of news sentiment and investor attention metrics with an attention-based Temporal Fusion Transformer framework. This approach not only enables highly effective forecasting, but also provides insights into the temporal dynamics that influence the stockmarket. The effectiveness of the model is demonstrated by analyzing stock price data for 41 of the largest market capitalization companies over the period 2010 to 2021. The results confirm the superiority of the proposed model over existing deep learning approaches, and the attention analysis underscores the critical role of synthesizing news sentiment and attention metrics in predicting stock prices.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-22586S" target="_blank" >GA22-22586S: Aspect-based sentiment analysis of financial texts for predicting corporate financial performance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT III, AIAI 2024
ISBN
978-3-031-63218-1
ISSN
1868-4238
e-ISSN
1868-422X
Number of pages
14
Pages from-to
30-43
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Corfu
Event date
Jun 27, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001283392400003