Variational sequences on fibred velocity spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F12%3A39895873" target="_blank" >RIV/00216275:25530/12:39895873 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Variational sequences on fibred velocity spaces
Original language description
The variational sequence theory in geometric mechanics is extended to second order velocity spaces oversmooth manifolds. New explicit formulas for the classes in this sequence, representing the variational objects such as Lagrangians,Euler-Lagrange formsand Helmholtz forms, are derived. The expressions, given in the canonical coordinates,explain the structure of trivial Lagrangians on these underlying manifolds and allow straightforward applications in theinverse problem of the calculus of variations.The differences between local and global variationality are discussed andillustrated by examples. The variational theory of parameter-invariant problems of second order is considered in terms ofjet differential groups.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0058" target="_blank" >EE2.3.30.0058: Development of Research Teams at the University of Pardubice</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Global Journal of Mathematical Sciences
ISSN
2164-3709
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
77-87
UT code for WoS article
—
EID of the result in the Scopus database
—