Possibilities of feedforward multilayer neural network classifier as a detector of pest birds in vineyards
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F15%3A39900201" target="_blank" >RIV/00216275:25530/15:39900201 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4028/www.scientific.net/JERA.18.184" target="_blank" >http://dx.doi.org/10.4028/www.scientific.net/JERA.18.184</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4028/www.scientific.net/JERA.18.184" target="_blank" >10.4028/www.scientific.net/JERA.18.184</a>
Alternative languages
Result language
angličtina
Original language name
Possibilities of feedforward multilayer neural network classifier as a detector of pest birds in vineyards
Original language description
In this paper, the application of artificial neural network clasifier to resolve pest birds in agricultural areas as a part of a comprehensive system of protection against vermin is demonstrated. Firstly, the idea of the whole system is outlined. Then, the method of recognition is described, the process of artificial neural network design is illustrated and the classifier is validated using data gathered in the fields. Eventually, the results are compared to similar works.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JB - Sensors, detecting elements, measurement and regulation
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Engineering Research in Africa
ISSN
1663-3571
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
184-191
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84945193388