All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GPA-ES Algorithm Modification for Large Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F19%3A39915138" target="_blank" >RIV/00216275:25530/19:39915138 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-30329-7_9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-30329-7_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-30329-7_9" target="_blank" >10.1007/978-3-030-30329-7_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    GPA-ES Algorithm Modification for Large Data

  • Original language description

    This paper discusses improvement of Genetic Programming Algorithm to large data sets with respect to future extension to big data applications. On the beginning it summarizes requirements on evolutionary system to be applicable in the area of big data and ways of their satisfaction. Then GPAs and especially their improvements by solution constant optimization (so called hierarchical and hybrid genetic programming algorithms) are discussed in this paper. After a discussion of few experiment results of introduced novel evaluation scheme approach with floating data window is presented. Novel evaluation scheme applies floating data window to fitness function evaluation. After one evaluation step of GPA including tuning of parameters (solution constants) by embedded Evolutionary Strategy algorithm data window moves to new position. Presented results demonstrate that this strategy can be faster and more efficient than evolution of whole training data set in each evolutionary step of GPA algorithm. This modification can be starting point of future applications of GPA in the field of large and big data analytic.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Cooperation in Applied Research between the University of Pardubice and companies, in the Field of Positioning, Detection and Simulation Technology for Transport Systems (PosiTrans)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Intelligent systems applications in software engineering : proceedings of 3rd computational methods in systems and software 2019, Vol. 1

  • ISBN

    978-3-030-30328-0

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Number of pages

    9

  • Pages from-to

    98-106

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Zlín

  • Event date

    Sep 10, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article