All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Floating Data Window Movement Influence to Genetic Programming Algorithm Efficiency

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F19%3A39915177" target="_blank" >RIV/00216275:25530/19:39915177 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-31362-3" target="_blank" >http://dx.doi.org/10.1007/978-3-030-31362-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-31362-3" target="_blank" >10.1007/978-3-030-31362-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Floating Data Window Movement Influence to Genetic Programming Algorithm Efficiency

  • Original language description

    Presented paper deals with problem of large data series modeling by genetic programming algorithm. The need of repeated evaluation constraints size of training data set in standard Genetic Programming Algorithms (GPAs) because it causes unacceptable number of fitness function evaluations. Thus, the paper discusses possibility of floating data window use and brings results of tests on large training data vector containing 1 million rows. Used floating window is small and for each cycle of GPA it changes its position. This movement allows to incorporate information contained in large number of samples without the need to evaluate all data points contained in training data in each GPA cycle. Behaviors of this evaluation concept are demonstrated on symbolic regression of Lorenz attractor system equations from precomputed training data set calculated from original difference equations. As expected, presented results points that the algorithm is more efficient than evaluating of whole data set in each cycle of GPA.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Cooperation in Applied Research between the University of Pardubice and companies, in the Field of Positioning, Detection and Simulation Technology for Transport Systems (PosiTrans)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational statistics and mathematical modeling methods in intelligent systems : proceedings of 3rd computational methods in systems and software 2019, Vol. 2

  • ISBN

    978-3-030-31361-6

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Number of pages

    6

  • Pages from-to

    24-30

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Zlín

  • Event date

    Sep 10, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article