All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FMICW Radar Target Classification By Neural Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39916106" target="_blank" >RIV/00216275:25530/20:39916106 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092342" target="_blank" >http://dx.doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092342</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092342" target="_blank" >10.1109/RADIOELEKTRONIKA49387.2020.9092342</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    FMICW Radar Target Classification By Neural Network

  • Original language description

    This document describes automatic classification of targets detected by the FMICW radar. These targets are counted and sorted to three groups (incoming, outgoing and static targets). We derived this information from the output of the neural network which marked the targets in 2D spectrum. The additional neural network has five layers. The first layer is used for the suppression of the targets with even numbers of points, which causes problems during the symmetry detection. The second and third layers detect the symmetry in the dimension (vertical or horizontal). The fourth layer checks out if the symmetry is in both dimensions and if the detection is not a false alert caused by the constellation of the targets. The fifth layer contains only 4 neurons and this layer is used for counting of the targets and classification of the targets (if they are static, incoming or outgoing). The neural network is composed of a simple block for the easy implementation on the FPGA.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    30th International Conference Radioelektronika, RADIOELEKTRONIKA 2020

  • ISBN

    978-1-72816-469-4

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    IEEE (Institute of Electrical and Electronics Engineers)

  • Place of publication

    New York

  • Event location

    Bratislava

  • Event date

    Apr 15, 2020

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article