All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

One Step Deep Learning Approach to Grasp Detection in Robotics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39918034" target="_blank" >RIV/00216275:25530/21:39918034 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-90321-3_2" target="_blank" >http://dx.doi.org/10.1007/978-3-030-90321-3_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-90321-3_2" target="_blank" >10.1007/978-3-030-90321-3_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    One Step Deep Learning Approach to Grasp Detection in Robotics

  • Original language description

    Grasp point detection is a necessary ability to handle for industrial robots. In recent years, various deep learning-based techniques for robotic grasping have been introduced. To follow this trend, we introduce a convolutional neural network-based approach for model-free one step method for grasp point detection. This method provides all feasible grasp points suitable for parallel grippers, based on a single RGB image of the scene. A case study, which shows the outstanding accuracy of the presented approach as well as its acceptable response time, is presented at the end of this contribution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Data Science and Intelligent Systems : proceedings of 5th Computational Methods in Systems and Software 2021, Vol. 2

  • ISBN

    978-3-030-90320-6

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    10

  • Pages from-to

    8-17

  • Publisher name

    Springer Science and Business Media

  • Place of publication

  • Event location

    ONLINE

  • Event date

    Oct 1, 2021

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article