All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New End-to-End Strategy Based on DeepLabv3+Semantic Segmentation for Human Head Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39918542" target="_blank" >RIV/00216275:25530/21:39918542 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1424-8220/21/17/5848" target="_blank" >https://www.mdpi.com/1424-8220/21/17/5848</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s21175848" target="_blank" >10.3390/s21175848</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New End-to-End Strategy Based on DeepLabv3+Semantic Segmentation for Human Head Detection

  • Original language description

    In the field of computer vision, object detection consists of automatically finding objects in images by giving their positions. The most common fields of application are safety systems (pedestrian detection, identification of behavior) and control systems. Another important application is head/person detection, which is the primary material for road safety, rescue, surveillance, etc. In this study, we developed a new approach based on two parallel Deeplapv3+ to improve the performance of the person detection system. For the implementation of our semantic segmentation model, a working methodology with two types of ground truths extracted from the bounding boxes given by the original ground truths was established. The approach has been implemented in our two private datasets as well as in a public dataset. To show the performance of the proposed system, a comparative analysis was carried out on two deep learning semantic segmentation state-of-art models: SegNet and U-Net. By achieving 99.14% of global accuracy, the result demonstrated that the developed strategy could be an efficient way to build a deep neural network model for semantic segmentation. This strategy can be used, not only for the detection of the human head but also be applied in several semantic segmentation applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Cooperation in Applied Research between the University of Pardubice and companies, in the Field of Positioning, Detection and Simulation Technology for Transport Systems (PosiTrans)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    000694518800001

  • EID of the result in the Scopus database