All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning to segment from object sizes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359086" target="_blank" >RIV/68407700:21230/22:00359086 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-3226/paper6.pdf" target="_blank" >http://ceur-ws.org/Vol-3226/paper6.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning to segment from object sizes

  • Original language description

    Deep learning has proved particularly useful for semantic segmentation, a fundamental image analysis task. However, the standard deep learning methods need many training images with ground-truth pixel-wise annotations, which are usually laborious to obtain and, in some cases (e.g., medical images), require domain expertise. Therefore, instead of pixel-wise annotations, we focus on image annotations that are significantly easier to acquire but still informative, namely the size of foreground objects. We define the object size as the maximum Chebyshev distance between a foreground and the nearest background pixel. We propose an algorithm for training a deep segmentation network from a dataset of a few pixel-wise annotated images and many images with known object sizes. The algorithm minimizes a discrete (non-differentiable) loss function defined over the object sizes by sampling the gradient and then using the standard back-propagation algorithm. Experiments show that the new approach improves the segmentation performance.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 22nd Conference Information Technologies – Applications and Theory (ITAT 2022)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Number of pages

    6

  • Pages from-to

    55-60

  • Publisher name

    CEUR-WS.org

  • Place of publication

  • Event location

    Zuberec

  • Event date

    Sep 23, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article