All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning to segment from object thickness annotations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00366106" target="_blank" >RIV/68407700:21230/23:00366106 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ISBI53787.2023.10230621" target="_blank" >https://doi.org/10.1109/ISBI53787.2023.10230621</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISBI53787.2023.10230621" target="_blank" >10.1109/ISBI53787.2023.10230621</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning to segment from object thickness annotations

  • Original language description

    Measuring object size is fast and a standard part of many radiological evaluation procedures. We describe a deep learning segmentation method that can be trained on a small number of pixel-wise reference segmentation and then fine-tuned from the weak annotations of the object thickness. The difficulty is in the non-differentiability of the thickness function defined using the pixel-wise distance transform. We overcome it by optimizing the expected value of the loss function after the injection of a virtual random noise. Further speedup is possible using the properties of the distance transform. We demonstrate the benefit of the proposed method on ultrasound images of the carotid artery. The fine-tuning improves the performance by about 10% IoU.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)

  • ISBN

    978-1-6654-7358-3

  • ISSN

    1945-7928

  • e-ISSN

    1945-8452

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    New Jersey

  • Event location

    Cartagena de Indias

  • Event date

    Apr 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001062050500298