All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fundamental equations of geodesic mappings and their generalisations.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F10%3APU89380" target="_blank" >RIV/00216305:26110/10:PU89380 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    ruština

  • Original language name

    Fundamental equations of geodesic mappings and their generalisations. (Russian)

  • Original language description

    The paper devoted to basic (mainly linear) equations of the theory of geodesic mappings and their generalisations. We summarise results concerning coformal mappings on Einsteinian spaces, geodesic, holomorphically projective and F-planar mappings on (pseudo-) Riemannian spaces, and also F-planar deformations of spaces with affine connection. (Russian)

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz

  • ISSN

    0233-6723

  • e-ISSN

  • Volume of the periodical

    2010

  • Issue of the periodical within the volume

    124

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    28

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database