Almost geodesic mappings and projections of the sphere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU146809" target="_blank" >RIV/00216305:26110/22:PU146809 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1134/S0001434622030178" target="_blank" >https://link.springer.com/article/10.1134/S0001434622030178</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0001434622030178" target="_blank" >10.1134/S0001434622030178</a>
Alternative languages
Result language
angličtina
Original language name
Almost geodesic mappings and projections of the sphere
Original language description
Diffeomorphisms of surfaces and spaces which take special curves of a given type to special curves of another given type were considered by many authors. Examples of such mappings are geodesic, holomorphically projective, F-planar, rotary, and other mappings. These mappings are defined as those taking all geodesic curves in one space to, respectively, geodesic, analytic, F-planar, and rotary curves in the other space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICAL NOTES
ISSN
1067-9073
e-ISSN
1573-8876
Volume of the periodical
111
Issue of the periodical within the volume
3-4
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
5
Pages from-to
498-502
UT code for WoS article
000787851100017
EID of the result in the Scopus database
2-s2.0-85128923373