Optimal singular correlation matrices estimated when sample size is less than the number of random variables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F12%3APU101551" target="_blank" >RIV/00216305:26110/12:PU101551 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimal singular correlation matrices estimated when sample size is less than the number of random variables
Original language description
This paper presents a number of theoretical and numerical results for two norms of optimal correlation matrices in relation to correlation control in Monte Carlo type sampling and the designs of experiments. The optimal correlation matrices are constructed for cases when the number of simulations (experiments) Nsim is less than or equal to the stochastic dimension, i.e. the number of random variables (factors) Nvar. In such cases the estimated correlation matrix cannot be positive definite and must be singular. However, the correlation matrix may be required to be as close to the unit matrix as possible (optimal). The paper presents a simple mechanical analogy for such optimal singular positive semidefinite correlation matrices. Many examples of optimal correlation matrices are given, both analytically and numerically.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP105%2F11%2F1385" target="_blank" >GAP105/11/1385: Inverse structural reliability problems</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PROBABILISTIC ENGINEERING MECHANICS
ISSN
0266-8920
e-ISSN
—
Volume of the periodical
2012 (30)
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
104-116
UT code for WoS article
—
EID of the result in the Scopus database
—