All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sign-changing diagonal perturbations of Laplacian matrices of graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931899" target="_blank" >RIV/49777513:23520/17:43931899 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.laa.2017.05.043" target="_blank" >https://doi.org/10.1016/j.laa.2017.05.043</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.laa.2017.05.043" target="_blank" >10.1016/j.laa.2017.05.043</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sign-changing diagonal perturbations of Laplacian matrices of graphs

  • Original language description

    In this paper we provide sufficient conditions for positive (semi)definiteness of sign-changing diagonal perturbations of positive semidefinite difference operators and their matrix representations, the Laplacian matrices of graphs. Our estimates arise from the discrete version of the Poincar&apos;{e} inequality and essentially depend on the algebraic connectivity of the underlying graph, i.e., the second smallest eigenvalue of the graph Laplacian matrix. We generalize our results to positive semidefinite matrices with simple zero eigenvalue and illustrate our results by numerical experiments and discuss the optimality of our assumptions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA15-07690S" target="_blank" >GA15-07690S: Partial Difference and Differential Equations on Lattices</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Linear Algebra and Applications

  • ISSN

    0024-3795

  • e-ISSN

  • Volume of the periodical

    531

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    19

  • Pages from-to

    64-82

  • UT code for WoS article

    000408185800005

  • EID of the result in the Scopus database

    2-s2.0-85020286165