Sensitivity analysis strategies for artificial neural networks modelling of engineering problems.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU113028" target="_blank" >RIV/00216305:26110/14:PU113028 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Sensitivity analysis strategies for artificial neural networks modelling of engineering problems.
Original language description
The paper presents two different strategies for sensitivity analysis related to artificial neural networks: nonparametric rank-order statistical correlation and neural network committee-based sensitivity analysis. Numerical examples illustrate the usefulness and feasibility of both alternative approaches.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20102 - Construction engineering, Municipal and structural engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Conference on Civil, Urban and Environmental Engineering (CUEE2014)
ISBN
978-1-78466-044-4
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
161-169
Publisher name
Neuveden
Place of publication
Beijing
Event location
Peking
Event date
Aug 19, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—