Geodesic Mappings of Manifolds with Affine Connection onto the Ricci Symmetric Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU128170" target="_blank" >RIV/00216305:26110/18:PU128170 - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85047988254&origin=resultslist&sort=plf-f&src=s&st1=hinterleitner%2ci&st2=&sid=bff722bb163396e025c7bd0278cbc144&sot=b&sdt=b&sl=28&s=AUTHOR-NAME%28hinterleitner%2ci%29&relpos=0&citeCnt=0&searchTerm=" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85047988254&origin=resultslist&sort=plf-f&src=s&st1=hinterleitner%2ci&st2=&sid=bff722bb163396e025c7bd0278cbc144&sot=b&sdt=b&sl=28&s=AUTHOR-NAME%28hinterleitner%2ci%29&relpos=0&citeCnt=0&searchTerm=</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1802379B" target="_blank" >10.2298/FIL1802379B</a>
Alternative languages
Result language
angličtina
Original language name
Geodesic Mappings of Manifolds with Affine Connection onto the Ricci Symmetric Manifolds
Original language description
In the present paper we investigate geodesic mappings of manifolds with affine connection onto Ricci symmetric maniifolds which are characterized by the covariantly constant Ricci tensor. We obtaind a fundamental system for this problem in a form of a system of Cauchy type equations in covariant derivatives.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1408" target="_blank" >LO1408: AdMaS UP – Advanced Building Materials, Structures and Technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FILOMAT
ISSN
0354-5180
e-ISSN
2406-0933
Volume of the periodical
32
Issue of the periodical within the volume
2
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
7
Pages from-to
379-385
UT code for WoS article
000438494500003
EID of the result in the Scopus database
2-s2.0-85047988254