All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geodesic mappings of manifolds with afine connection onto the Ricci symmetric manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590046" target="_blank" >RIV/61989592:15310/18:73590046 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.doiserbia.nb.rs/img/doi/0354-5180/2018/0354-51801802379B.pdf" target="_blank" >http://www.doiserbia.nb.rs/img/doi/0354-5180/2018/0354-51801802379B.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2298/FIL1802379B" target="_blank" >10.2298/FIL1802379B</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geodesic mappings of manifolds with afine connection onto the Ricci symmetric manifolds

  • Original language description

    In the present paper we investigate geodesic mappings of manifolds with affine connection onto Ricci symmetric manifolds which are characterized by the covariantly constant Ricci tensor. We obtained a fundamental system for this problem in a form of a system of Cauchy type equations in covariant derivatives depending on no more than n(n+1) real parameters. Analogous results are obtained for geodesic mappings of manifolds with afine connection onto symmetric manifolds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Filomat

  • ISSN

    0354-5180

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    RS - THE REPUBLIC OF SERBIA

  • Number of pages

    7

  • Pages from-to

    379-385

  • UT code for WoS article

    000438494500003

  • EID of the result in the Scopus database

    2-s2.0-85047988254