On Canonical Almost Geodesic Mappings of Type π2(e)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73597303" target="_blank" >RIV/61989592:15310/20:73597303 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/1/54/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/1/54/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8010054" target="_blank" >10.3390/math8010054</a>
Alternative languages
Result language
angličtina
Original language name
On Canonical Almost Geodesic Mappings of Type π2(e)
Original language description
The presented work is devoted to study of the geodesic mappings of spaces with affine connection onto generalized Ricci symmetric spaces. We obtained a fundamental system for this problem in a form of a system of Cauchy type equations in covariant derivatives depending on no more than 1/2 n^2 (n + 1) + n real parameters. Analogous results are obtained for geodesic mappings of manifolds with affine connection onto equiaffine generalized Ricci symmetric spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
"54-1"-"54-8"
UT code for WoS article
000515730100138
EID of the result in the Scopus database
2-s2.0-85080116245