All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Canonical Almost Geodesic Mappings of Type π2(e)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73597303" target="_blank" >RIV/61989592:15310/20:73597303 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/8/1/54/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/1/54/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8010054" target="_blank" >10.3390/math8010054</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Canonical Almost Geodesic Mappings of Type π2(e)

  • Original language description

    The presented work is devoted to study of the geodesic mappings of spaces with affine connection onto generalized Ricci symmetric spaces. We obtained a fundamental system for this problem in a form of a system of Cauchy type equations in covariant derivatives depending on no more than 1/2 n^2 (n + 1) + n real parameters. Analogous results are obtained for geodesic mappings of manifolds with affine connection onto equiaffine generalized Ricci symmetric spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    8

  • Pages from-to

    "54-1"-"54-8"

  • UT code for WoS article

    000515730100138

  • EID of the result in the Scopus database

    2-s2.0-85080116245