All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geodesic mappings of spaces with affine connnection onto generalized Ricci symmetric spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597302" target="_blank" >RIV/61989592:15310/19:73597302 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.pmf.ni.ac.rs/filomat-content/2019/33-14/33-14-13-10651.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2019/33-14/33-14-13-10651.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2298/FIL1914475B" target="_blank" >10.2298/FIL1914475B</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geodesic mappings of spaces with affine connnection onto generalized Ricci symmetric spaces

  • Original language description

    The presented work is devoted to study of the geodesic mappings of spaces with affine connection onto generalized Ricci symmetric spaces. We obtained a fundamental system for this problem in a form of a system of Cauchy type equations in covariant derivatives depending on no more than 1/2 n^2(n + 1) + n real parameters. Analogous results are obtained for geodesic mappings of manifolds with affine connection onto equiane generalized Ricci symmetric spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Filomat

  • ISSN

    0354-5180

  • e-ISSN

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    RS - THE REPUBLIC OF SERBIA

  • Number of pages

    16

  • Pages from-to

    "4475–4480"

  • UT code for WoS article

    000502089300013

  • EID of the result in the Scopus database

    2-s2.0-85078227149