All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Circular Free Jets: CFD Simulations with Various Turbulence Models and Their Comparison with Theoretical Solutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU131293" target="_blank" >RIV/00216305:26110/19:PU131293 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1757-899X/471/6/062045" target="_blank" >https://iopscience.iop.org/article/10.1088/1757-899X/471/6/062045</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1757-899X/471/6/062045" target="_blank" >10.1088/1757-899X/471/6/062045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Circular Free Jets: CFD Simulations with Various Turbulence Models and Their Comparison with Theoretical Solutions

  • Original language description

    The theory of turbulent free jet is fundamental for the design of comfort ventilation, as free jets frequently occur in mixing and personalized ventilation systems and their characteristics strongly influence the air quality in the breathing zone of an occupant. The aim of this research is to provide recommendations that help researchers and practitioners improve the accuracy and reliability of their computational models of ventilation systems involving circular free jets. To accomplish this, a review of existing theoretical calculation models is performed, and these models are subsequently investigated by computational fluid dynamics. The theoretical solutions of free jets are compared with CFD simulations using various turbulent models such as the standard k-epsilon model, the k-epsilon realizable model, the standard k-omega model, the shear stress transport (SST) k-omega model, and the Reynolds stress model (RSM). The simulated models are represented by profiles of the centreline velocity for a free jet emanating from a round nozzle, because such presentation of the data proved to be particularly helpful for the comparison of the turbulence models. The k-omega SST turbulence closure scheme with standard coefficients produced results of the centreline velocity closest to the average of theoretical solutions investigated, whereas the discrepancy between the simulations and the theoretical models was about 60 % with the k-epsilon standard turbulence model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

    <a href="/en/project/LO1408" target="_blank" >LO1408: AdMaS UP – Advanced Building Materials, Structures and Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    WMCAUS 2018

  • ISBN

  • ISSN

    1757-899X

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    1-8

  • Publisher name

    IOP Publishing Ltd

  • Place of publication

    Bristol United Kingdom

  • Event location

    Praha

  • Event date

    Jun 18, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000465811802096