Stochastic Spectral Methods in Uncertainty Quantification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU135766" target="_blank" >RIV/00216305:26110/19:PU135766 - isvavai.cz</a>
Result on the web
<a href="http://tces.vsb.cz/Home/ArticleDetail/486" target="_blank" >http://tces.vsb.cz/Home/ArticleDetail/486</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.35181/tces-2019-0019" target="_blank" >10.35181/tces-2019-0019</a>
Alternative languages
Result language
angličtina
Original language name
Stochastic Spectral Methods in Uncertainty Quantification
Original language description
Uncertainty quantification is an important part of a probabilistic design of structures. Nonetheless, common Monte Carlo methods are highly computationally demanding or even not feasible for this task, especially in case of mathematical models of physical problems solved by finite element method. Therefore, the paper is focused on the efficient alternative approach for uncertainty quantification-stochastic spectral expansion, represented herein by Polynomial Chaos Expansion. In recent years, an application of stochastic spectral methods in uncertainty quantification is the topic of research for many scientists in various fields of science and its efficiency was shown by various studies. The paper presents basic theoretical background of polynomial chaos expansion and its connection to uncertainty quantification. The possibility of efficient statistical and sensitivity analysis is investigated and an application in analytical examples with known reference solution is presented herein. Moreover, practical implementation of methodology is discussed and developed SW tool is presented herein.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
20102 - Construction engineering, Municipal and structural engineering
Result continuities
Project
<a href="/en/project/GA18-13212S" target="_blank" >GA18-13212S: Response surface and sensitivity analysis methods in stochastic computational mechanics (RESUS)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series
ISSN
1804-4824
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
6
Pages from-to
48-53
UT code for WoS article
—
EID of the result in the Scopus database
—