All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Formation and Influence of Magnesium-Alumina Spinel on the Properties of Refractory Forsterite-Spinel Ceramics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU134904" target="_blank" >RIV/00216305:26110/20:PU134904 - isvavai.cz</a>

  • Result on the web

    <a href="http://mit.imt.si/izvodi/mit201/nguyen.pdf" target="_blank" >http://mit.imt.si/izvodi/mit201/nguyen.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17222/mit.2019.198" target="_blank" >10.17222/mit.2019.198</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Formation and Influence of Magnesium-Alumina Spinel on the Properties of Refractory Forsterite-Spinel Ceramics

  • Original language description

    Forsterite refractory ceramic is mostly used in the cement industry as the lining of a rotary kiln and as the lining of metallurgical furnaces due to its high refractoriness of up to 1850 °C. Another significant property of forsterite is its coefficient of linear thermal expansion used in the electrotechnical industry for ceramic-metal joints. An addition of aluminium oxide to a raw-material mixture results in the creation of a magnesium-alumina spinel (MgO·Al2O3), which improves the sintering and mechanical properties of forsterite ceramics. An inexpensive source of aluminium oxide is fly ash. The utilization of fly ash, a secondary energy product of coal-burning power plants, is important for the environment and sustainable development. This paper evaluates the transformation of mullite (3Al2O3·2SiO2) from fly ash into a magnesium-alumina spinel, its influence during the synthesis and the resulting properties of a fired forsterite refractory ceramic body. Forsterite-spinel ceramics were synthesized from olivine, calcined magnesite and 0–20 % of fly-ash powders. XRD analyses were used to determine the mineralogical composition, thermal analyses were used to determine the formation of spinel and its behaviour during the firing, and scanning electron microscopy (SEM) was used to determine the morphology of crystal phases. The refractoriness of pyrometric cones, refractoriness under load, thermal-shock resistance, water absorption, porosity and mechanical properties of the fired test samples were also determined. The transformation of mullite resulted in small amounts of magnesium-alumina spinel in the forsterite ceramics. Test results showed that the presence of magnesium-alumina spinel improved the sintering, microstructure, thermal-shock resistance and mechanical properties in comparison with pure-forsterite refractory ceramics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GA18-02815S" target="_blank" >GA18-02815S: Elimination of sulphur oxide emission during the firing of ceramic bodies based on fly ashes of class C</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materiali in tehnologije

  • ISSN

    1580-2949

  • e-ISSN

    1580-3414

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    SI - SLOVENIA

  • Number of pages

    7

  • Pages from-to

    135-141

  • UT code for WoS article

    000536656900021

  • EID of the result in the Scopus database

    2-s2.0-85081668100