All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Impact of Fly Ash as a Raw Material on the Properties of Refractory Forsterite–Spinel Ceramics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137306" target="_blank" >RIV/00216305:26110/20:PU137306 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2075-163X/10/9/835" target="_blank" >https://www.mdpi.com/2075-163X/10/9/835</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/min10090835" target="_blank" >10.3390/min10090835</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Impact of Fly Ash as a Raw Material on the Properties of Refractory Forsterite–Spinel Ceramics

  • Original language description

    This article examines the process for the synthesis of forsterite-spinel (2MgO center dot SiO2/MgO center dot Al2O3) refractory ceramics from fly ash and alumina as sources of aluminum oxide. Raw materials were milled, mixed in different ratios and sintered at 1500 degrees C for 2 h. Sintered samples were characterized by XRD, thermal analyses and SEM. Porosity, water absorption, bulk density, refractoriness, refractoriness under load and thermal shock resistance were also investigated. The impact of fly ash as a raw material was investigated in accordance with the resulting properties and microstructure of samples with fly ash and alumina as the raw materials. Due to the positive effect of flux oxides (iron oxides and alkalis) on sintering, the mullite contained in fly ash completely decomposed into silica and alumina, which, together with magnesium oxide, formed spinel. This led to improved microstructural and mechanical properties and thermal shock resistance. In particular, mixtures with 10 wt.% and 20 wt.% of fly ash had the most promising results compared to alumina mixtures. Both modulus of rupture and thermal shock resistance were improved, while the impact on refractory properties was minimal. The novelty of this research lies in the recycling of fly ash, a by-product from coal-burning power plants, into a raw material for the production of forsterite-spinel refractory ceramics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20504 - Ceramics

Result continuities

  • Project

    <a href="/en/project/GA18-02815S" target="_blank" >GA18-02815S: Elimination of sulphur oxide emission during the firing of ceramic bodies based on fly ashes of class C</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Minerals

  • ISSN

    2075-163X

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000580856500001

  • EID of the result in the Scopus database

    2-s2.0-85098568236