Mechanism-Based Energy Regularization in Computational Modeling of Quasibrittle Fracture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137300" target="_blank" >RIV/00216305:26110/20:PU137300 - isvavai.cz</a>
Result on the web
<a href="http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=2664355" target="_blank" >http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=2664355</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4047207" target="_blank" >10.1115/1.4047207</a>
Alternative languages
Result language
angličtina
Original language name
Mechanism-Based Energy Regularization in Computational Modeling of Quasibrittle Fracture
Original language description
Quasibrittle materials are featured by a strain-softening constitutive behavior under many loading scenarios, which could eventually lead to localization instability. It has long been known that strain localization would result in spurious mesh sensitivity in finite element (FE) simulations. Previous studies have shown that, for the case of fully localized damage, the mesh sensitivity can be mitigated through energy regularization of the material constitutive law. However, depending on the loading configuration and structural geometry, quasibrittle structures could exhibit a complex damage process, which involves both localized and diffused damage patterns at different stages of loading. This study presents a generalized energy regularization method that considers the spatial and temporal evolution of damage pattern. The method introduces a localization parameter, which describes the local damage pattern. The localization parameter governs the energy regularization of the constitutive model, which captures the transition from diffused to localized damage during the failure process. The method is cast into an isotropic damage model, and is further extended to rate-dependent behavior. The energy regularization scheme is directly incorporated into the kinetics of damage growth. The model is applied to simulate static and dynamic failures of ceramic specimens. It is shown that the present model is able to effectively mitigate the spurious mesh sensitivity in FE simulations of both types of failure. The present analysis demonstrates the essential role of mechanism-based energy regularization of constitutive relation in FE simulations of quasibrittle fracture.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
<a href="/en/project/GA19-12197S" target="_blank" >GA19-12197S: Coupled Discrete Meso-scale Model for Mechanics and Transport Phenomena in Concrete</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
ISSN
0021-8936
e-ISSN
1528-9036
Volume of the periodical
87
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
„091003-1“-„091003-11“
UT code for WoS article
000562836800003
EID of the result in the Scopus database
2-s2.0-85096600862