All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mitigating mesh dependence in stochastic finite element simulations of quasibrittle fracture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU142666" target="_blank" >RIV/00216305:26110/21:PU142666 - isvavai.cz</a>

  • Result on the web

    <a href="https://congress.cimne.com/complas2021" target="_blank" >https://congress.cimne.com/complas2021</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mitigating mesh dependence in stochastic finite element simulations of quasibrittle fracture

  • Original language description

    Modeling quasibrittle materials as strain-softening continua leads to strain localization and the spurious mesh sensitivity of deterministic finite element (FE) simulatioys, an issue which has been addressed with the development of the localization limiters. This study focuses on the case of random material properties and aims to mitigate the mesh dependence of the predicted probabilistic structural response. Considering that each Gauss point of the finite element mesh represents a material element of finite size, the sampling distribution functions of the constitutive properties are related to the failure mechanism of the corresponding element. This consideration implies that the probability distributions of constitutive properties can vary with the element size. The proposed model is applied to FE simulations of a quasibrittle beam under the three-point bending (TPB) test and is shown to be efficient in mitigating mesh dependence of the output strength statistics.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20102 - Construction engineering, Municipal and structural engineering

Result continuities

  • Project

    <a href="/en/project/GA19-12197S" target="_blank" >GA19-12197S: Coupled Discrete Meso-scale Model for Mechanics and Transport Phenomena in Concrete</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů