All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Taylor series expansion for statistical moments of functions of correlated random variables

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137917" target="_blank" >RIV/00216305:26110/20:PU137917 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/10.1063/5.0026856" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0026856</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0026856" target="_blank" >10.1063/5.0026856</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Taylor series expansion for statistical moments of functions of correlated random variables

  • Original language description

    The paper is focused on reliability analysis of time-consuming mathematical models utilizing approximation in form of Taylor series expansion. Statistical analysis is crucial part of reliability analysis of structures but it is still challenging to analyze time-consuming mathematical models, e.g. represented by finite element method in implicit form. Efficient alternative is an approximation of original model by explicit function in specific form. The paper is focused on approximation by Taylor series expansion for statistical analysis of functions of random variables. Although it is common to use Taylor series expansion for functions of uncorrelated random variables, it is challenging to utilize Taylor series for correlated variables and highly non-linear functions. Therefore, possibilities and pitfalls of such approach are herein discussed from engineers point of view.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20102 - Construction engineering, Municipal and structural engineering

Result continuities

  • Project

    <a href="/en/project/GA18-13212S" target="_blank" >GA18-13212S: Response surface and sensitivity analysis methods in stochastic computational mechanics (RESUS)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings

  • ISBN

    978-0-7354-4025-8

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1-4

  • Publisher name

    American Institute of Physics

  • Place of publication

    New York, USA

  • Event location

    hotel Sheraton, Ixia, Rhodos

  • Event date

    Sep 23, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000636709500292