All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of Sulphate Attack on Properties of Modified Cement Composites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU143545" target="_blank" >RIV/00216305:26110/21:PU143545 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/app11188509" target="_blank" >https://doi.org/10.3390/app11188509</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app11188509" target="_blank" >10.3390/app11188509</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of Sulphate Attack on Properties of Modified Cement Composites

  • Original language description

    Monitoring the condition of building structures based on composite materials in aggressive environments shows that the deterioration of basic properties occurs under the influence of various factors such as temperature and humidity changes, in addition to changes in the chemical composition of air environment. In addition, the composite materials during the operation must retain not only the mechanical properties laid down at the design stage, but also the electro-physical characteristics, regardless of the type of destructive effects. In the current study, the quantitative assessment of the result of the interaction of an aggressive sulphate-containing medium with composites modified with conductive and dielectric additives was carried out. The effect of sulphate attack on the specific electrical conductivity of cement composites was studied. The nature of the interaction was evaluated by changing the properties of the samples of the developed compositions under the influence of a single-normal solution of sodium sulphate. The analysis was carried out by means of potentiometric titration using the exchange interaction method by fixing the degree of absorption of sulphate ions and determining the concentration of calcium ions in the solution. The measurement of the solution potential allowed determination of the quantitative indicators of the rate of calcium hydroxide leaching from the sample structure, which is necessary to assess the intensity of the destruction process and determine the nature of the change in strength properties. Measurements of the electrical resistivity of samples under the constant influence of sulphate aggression were taken during 28 days of observation. A method for quantifying the effect of a sulphate medium on a cement matrix was proposed that enables the material durability to be predicted. The features of changes in the morphology of structural components after exposure to aggressive solution were determined by physical and chemical met

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GC20-09072J" target="_blank" >GC20-09072J: Structure formation of advanced silicate composites with reduced impedance</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Sciences - Basel

  • ISSN

    2076-3417

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000699319800001

  • EID of the result in the Scopus database

    2-s2.0-85115103263