All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Canonical almost geodesic mappings of the first type onto generalized Ricci symmetric spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU146807" target="_blank" >RIV/00216305:26110/22:PU146807 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/22:73613456

  • Result on the web

    <a href="http://www.doiserbia.nb.rs/img/doi/0354-5180/2022/0354-51802204089B.pdf" target="_blank" >http://www.doiserbia.nb.rs/img/doi/0354-5180/2022/0354-51802204089B.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2298/FIL2204089B" target="_blank" >10.2298/FIL2204089B</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Canonical almost geodesic mappings of the first type onto generalized Ricci symmetric spaces

  • Original language description

    In the paper we consider canonical almost geodesic mappings of spaces with affine connection onto m-Ricci-symmetric spaces. In particular, we studied in detail canonical almost geodesic mappings of the first type of spaces with affine connections onto 2- and 3-Ricci-symmetric spaces. In either case the main equations for the mappings have been obtained as a closed mixed system of PDEs of Cauchy type. We have found the maximum number of essential parameters which the solution of the system depends on.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FILOMAT

  • ISSN

    0354-5180

  • e-ISSN

    2406-0933

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    RS - THE REPUBLIC OF SERBIA

  • Number of pages

    9

  • Pages from-to

    1089-1097

  • UT code for WoS article

    000789483900003

  • EID of the result in the Scopus database

    2-s2.0-85129063241