Geodesic and almost geodesic mappings onto Ricci symmetric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73585028" target="_blank" >RIV/61989592:15310/17:73585028 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Geodesic and almost geodesic mappings onto Ricci symmetric spaces
Original language description
This paper is devoted to study of geodesic and almost geodesic mappings of special spaces with affine connection. In the first section, we mention the basic definition of geodesic and almost geodesic mappings. The next section is devoted to geodesic mappings onto Ricci symmetric manifolds and its fundamental diferential equation in Cauchy type form in covariant derivatives. We also study almost geodesic mappings of the first type onto symmetric space.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematics, Information Technologies and Applied Sciences 2017 post-conference proceedings of extended versions of selected papers
ISBN
978-80-7582-026-6
ISSN
—
e-ISSN
neuvedeno
Number of pages
7
Pages from-to
43-49
Publisher name
Univerzita obrany
Place of publication
Brno
Event location
Brno
Event date
Feb 15, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—