Geodesic mappings onto generalized m-Ricci-symmetric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU147402" target="_blank" >RIV/00216305:26110/22:PU147402 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/13/2165/htm" target="_blank" >https://www.mdpi.com/2227-7390/10/13/2165/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10132165" target="_blank" >10.3390/math10132165</a>
Alternative languages
Result language
angličtina
Original language name
Geodesic mappings onto generalized m-Ricci-symmetric spaces
Original language description
In this paper, we study geodesic mappings of spaces with affine connections onto generalized 2-, 3-, and m-Ricci-symmetric spaces. In either case, the main equations for the mappings are obtained as a closed system of linear differential equations of the Cauchy type in the covariant derivatives. For the systems, we have found the maximum number of essential parameters on which the solutions depend. These results generalize the properties of geodesic mappings onto symmetric, recurrent, and also 2-, 3-, and m-(Ricci-)symmetric spaces with affine connections.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/ED2.1.00%2F03.0097" target="_blank" >ED2.1.00/03.0097: AdMaS - Advanced Materials, Structures and Technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
13
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000825582100001
EID of the result in the Scopus database
2-s2.0-85132987030