All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geodesic mappings onto generalized m-Ricci-symmetric spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU147402" target="_blank" >RIV/00216305:26110/22:PU147402 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/10/13/2165/htm" target="_blank" >https://www.mdpi.com/2227-7390/10/13/2165/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10132165" target="_blank" >10.3390/math10132165</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geodesic mappings onto generalized m-Ricci-symmetric spaces

  • Original language description

    In this paper, we study geodesic mappings of spaces with affine connections onto generalized 2-, 3-, and m-Ricci-symmetric spaces. In either case, the main equations for the mappings are obtained as a closed system of linear differential equations of the Cauchy type in the covariant derivatives. For the systems, we have found the maximum number of essential parameters on which the solutions depend. These results generalize the properties of geodesic mappings onto symmetric, recurrent, and also 2-, 3-, and m-(Ricci-)symmetric spaces with affine connections.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/ED2.1.00%2F03.0097" target="_blank" >ED2.1.00/03.0097: AdMaS - Advanced Materials, Structures and Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000825582100001

  • EID of the result in the Scopus database

    2-s2.0-85132987030