On the Lagrange variational problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU148436" target="_blank" >RIV/00216305:26110/23:PU148436 - isvavai.cz</a>
Result on the web
<a href="https://www.impan.pl/en/publishing-house/journals-and-series/annales-polonici-mathematici/all/130/2" target="_blank" >https://www.impan.pl/en/publishing-house/journals-and-series/annales-polonici-mathematici/all/130/2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/ap220330-30-1" target="_blank" >10.4064/ap220330-30-1</a>
Alternative languages
Result language
angličtina
Original language name
On the Lagrange variational problem
Original language description
We investigate the stationarity of variational integrals evaluated on solutions of a system of differential equations. First, the fundamental concepts are relieved of accidental structures and of hypothetical assumptions. The differential constraints, stationarity and the Euler-Lagrange equations related to Poincare-Cartan forms do not require any reference to coordinates or deep existence theorems for boundary value problems. Then, by using the jet formalism, the Lagrange multiplier rule is proved for all higher-order variational integrals and arbitrary compatible systems of differential equations. The self-contained exposition is based on the standard theory of differential forms and vector fields.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Polon.Math.
ISSN
0066-2216
e-ISSN
1730-6272
Volume of the periodical
130
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
32
Pages from-to
149-180
UT code for WoS article
000961969900001
EID of the result in the Scopus database
2-s2.0-85168154372