LEPAGE EQUIVALENTS OF SECOND-ORDER EULER-LAGRANGE FORMS AND THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A10212795" target="_blank" >RIV/61989592:15310/09:10212795 - isvavai.cz</a>
Alternative codes found
RIV/61988987:17310/09:A1401A5F
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
LEPAGE EQUIVALENTS OF SECOND-ORDER EULER-LAGRANGE FORMS AND THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS
Original language description
In the calculus of variations, Lepage (n + 1)-forms are closed differential forms, representing Euler-Lagrange equations. They are fundamental for investigation of variational equations by means of exterior differential systems methods, with important applications in Hamilton and Hamilton-Jacobi theory and theory of integration of variational equations. In this paper, Lepage equivalents of second-order Euler-Lagrange quasi-linear PDE's are characterised explicitly. A closed (n + 1)-form uniquely determined by the Euler-Lagrange form is constructed, and used to find a geometric solution of the inverse problem of the calculus of variations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of nonlinear mathematical physics
ISSN
1402-9251
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
2
Country of publishing house
FR - FRANCE
Number of pages
16
Pages from-to
—
UT code for WoS article
000268448300010
EID of the result in the Scopus database
—