All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Damage Identification Using Artificial Neural Network-Aided Aimed Multilevel Sampling Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU149726" target="_blank" >RIV/00216305:26110/23:PU149726 - isvavai.cz</a>

  • Result on the web

    <a href="http://tces.vsb.cz" target="_blank" >http://tces.vsb.cz</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.35181/tces-2023-0017" target="_blank" >10.35181/tces-2023-0017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Damage Identification Using Artificial Neural Network-Aided Aimed Multilevel Sampling Method

  • Original language description

    Structural health monitoring is extremely important for sustaining and preserving the service life of civil structures. Research to identify the damage can detect, locate, quantify and, where appropriate, predict potential structural damage. This paper is about damage identified by non-destructive vibrationbased experiments, which uses the difference between modal frequencies and deflection of an initial and damaged structure. The main objective of this paper is to present a hybrid method for structural damage identification combining artificial neural network and aimed multilevel sampling method. The combination of these approaches yields a more efficient damage identification in terms of time and accuracy of damage localization and damage extent determination

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    20101 - Civil engineering

Result continuities

  • Project

    <a href="/en/project/TM04000012" target="_blank" >TM04000012: A concrete bridge health interpretation system based on mutual boost of big data and physical mechanism</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series

  • ISSN

    1804-4824

  • e-ISSN

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    6

  • Pages from-to

    61-66

  • UT code for WoS article

  • EID of the result in the Scopus database