On Geodesic Definiteness by Similarity Points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150781" target="_blank" >RIV/00216305:26110/23:PU150781 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/23:73621123
Result on the web
<a href="https://link.springer.com/article/10.1007/s10958-023-06879-z" target="_blank" >https://link.springer.com/article/10.1007/s10958-023-06879-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-023-06879-z" target="_blank" >10.1007/s10958-023-06879-z</a>
Alternative languages
Result language
angličtina
Original language name
On Geodesic Definiteness by Similarity Points
Original language description
In this paper, we present some results obtained in the theory of geodesic mappings of surfaces. It is well known that a mapping that is both conformal and geodesic is homothetic. Based on this property, we obtain new results on the definiteness of surfaces with respect to geodesic mappings, which generalize results obtained by V. T. Fomenko.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
277
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
727-735
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85180262997