Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU151899" target="_blank" >RIV/00216305:26110/24:PU151899 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0005109823006428?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0005109823006428?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2023.111473" target="_blank" >10.1016/j.automatica.2023.111473</a>
Alternative languages
Result language
angličtina
Original language name
Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients
Original language description
Nonautonomous linear ordinary differential equations with Kirchhoff coefficients are considered. Under appropriate assumptions on the topology of the directed graphs of the coefficients, it is shown that if the Perron vectors of the coefficients are slowly varying at infinity, then every solution is asymptotic to a constant multiple of the Perron vectors at infinity. Our results improve and generalize some recent convergence theorems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AUTOMATICA
ISSN
0005-1098
e-ISSN
1873-2836
Volume of the periodical
161
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
1-5
UT code for WoS article
001144210900001
EID of the result in the Scopus database
2-s2.0-85180527571